Wet Scavenging of Soluble Trace Gases in Deep Convective Clouds: A Comparison of SEAC4RS and DC3 Sampling Strategies

Megan Bela

megan.bela@colorado.edu
University of Colorado, Boulder

Owen Brian Toon, Mary Barth, Alan Fried, Yunyao Li, Kristin Cummings, Kenneth Pickering, Cameron Homeyer, Hugh Morrison, Qing Yang, Dale Allen, Daniel O'Sullivan

Instrument Teams: DACOM, ESRL, CAMS, DFGAS, P-CIMS, S-CIMS, GT-CIMS, VCSEL, DLH, CDP, 2D-S

O_3 formation in UT controlled by HO_x and NO_x ; many HO_x precursors are soluble

- How much does wet removal of soluble species vary in deep convective storms in different regions?
- How well does WRF-Chem represent this wet removal?
- How much does fractional removal vary when calculated from anvil vs. core observations?

- How much does wet removal of soluble species vary in deep convective storms in different regions?
- How well does WRF-Chem represent this wet removal?
- How much does fractional removal vary when calculated from anvil vs. core observations?

Fraction Removed (FR) measures net transport of chemical species from storm inflow to outflow

Mean [S_x]/[CO] in outflow

Mean [S_x]/[CO] value in inflow

Fraction Removed (FR) measures net transport of chemical species from storm inflow to outflow

Mean $[S_x]/[CO]$ in outflow \leftarrow

t ~ 0-75 min

w ~ 35-45 m s⁻¹ H ~ 10 km t ~ 4-5 min

Mean [S_x]/[CO] value in inflow

Fried et al. (2015) extrapolates CH₂O observations in anvils to storm cores

Mean $[S_x]/[CO]$ in outflow \leftarrow Mean [S_x]/[CO] value in inflow

Fried, "Formaldehyde Scavenging Efficiency Determinations in Convective Clouds: Comparisons of Select SEAC4RS Data with DC3 Results," Th. 9:15 am

Comparing WRF-Chem simulations at top of storm core produces similar scavenging efficiencies (SE)

Mean $[S_x]/[CO]$ in outflow \leftarrow

WRF-Chem 40-dBZ SE: **0.51**

Observed CH₂O 3-component SE: 0.40-0.57

Mean [S_x]/[CO] value in inflow

Fried, "Formaldehyde Scavenging Efficiency Determinations in Convective Clouds: Comparisons of Select SEAC4RS Data with DC3 Results," Th. 9:15 am

multi-cellular system, Oklahoma May 29, 2012

Airmass storm, Alabama May 21, 2012

Severe storm, Colorado June 6, 2012

Multi-cellular storm system with smoke ingestion, Colorado, June 22, 2012

Bela et al. (2015), in prep.

"Fraction removed" of CO is an indication of amount of entrainment

OK/AL storms remove more CH₂O and CH₃OOH than those in Colorado

Colorado storm cases remove more HNO₃ than OK/AL storms

- Wet removal of soluble species varies significantly among deep convective storms in different regions
- How well does WRF-Chem represent this wet removal?
- How much does fractional removal vary when calculated from anvil vs. core observations?

How well does WRF-Chem simulate severe storm dynamics and transport?

-Δz ~200 m

RRTMG radiation

Lightning Data
Assimilation

Morrison microphysics

NAM-ANL

YSU PBL

 $\Delta x = \Delta y = 1 \text{ km}$

Noah LSM

WRF-Chem Simulates Location, Timing, Structure of May 29, 2012 Severe Storm in Oklahoma

WRF-Chem Simulates Location, Timing, Structure of May 29, 2012 Severe Storm in Oklahoma

PR1992/Decaria lightning NO_x

MOZART chemistry

TUV photolysis

GOCART aerosol

MOZART,
DC-8 Obs.

Neu and Prather wet scavenging

NEI 2011

FINN

MEGAN v2.04

Neu and Prather wet scavenging does not track dissolved species

Neu and Prather wet scavenging does not track dissolved species

Neu and Prather wet scavenging does not track dissolved species

Bela et al. (2015), in prep.

For CH_2O , $r_f=0$ within error bars of observations, versus expected $r_f=0.64$

For HNO₃, r_f value has small impact on fraction removed

Wet removal of soluble species varies significantly among deep convective storms in different regions

- WRF-Chem represents wet removal of soluble species for a severe storm in Oklahoma
- How much does fractional removal vary when calculated from anvil vs. core observations?

- Wet removal of soluble species varies significantly among deep convective storms in different regions
- WRF-Chem represents wet removal of soluble species for a severe storm in Oklahoma
- How much does fractional removal vary when calculated from anvil vs. core observations?

How does wet removal compare in convective core sampling from SEAC4RS?

multi-cellular system, west Texas Sept. 18, 2013

Alan Fried

Less removal of CH₂O and H₂O₂, more of HNO₃ in Sept. 18 than OK May 29 storms

- Wet removal of soluble species varies significantly among deep convective storms in different regions
- WRF-Chem represents wet removal of soluble species for a severe storm in Oklahoma
- Less removal of CH₂O and H₂O₂, more of HNO₃ in Sept. 18 than OK May 29 may be due to anvil vs. core sampling

